
This	 work	 was	 performed	 under	 the	 auspices	 of	 the	 U.S.	 Department	
of	 Energy	 by	 Lawrence	 Livermore	 Na?onal	 Laboratory	 under	 Contract	
DE-‐AC52-‐07NA27344.	 Lawrence	 Livermore	 Na?onal	 Security,	 LLC Release Number:

This	 work	 was	 performed	 under	 the	 auspices	 of	 the	 U.S.	 Department	
of	 Energy	 by	 Lawrence	 Livermore	 Na?onal	 Laboratory	 under	 Contract	
DE-‐AC52-‐07NA27344.	 Lawrence	 Livermore	 Na?onal	 Security,	 LLC Release Number:

This	 work	 was	 performed	 under	 the	 auspices	 of	 the	 U.S.	 Department	
of	 Energy	 by	 Lawrence	 Livermore	 Na?onal	 Laboratory	 under	 Contract	
DE-‐AC52-‐07NA27344.	 Lawrence	 Livermore	 Na?onal	 Security,	 LLC Release Number:

Parallel Discrete Event
Simulation Course

#6

David Jefferson
Lawrence Livermore National Laboratory

LLNL-PRES-651651

1 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Reprise

���2

2 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Deadlock cause by never-used channels

���3

Problem of rarely- or never-used channels

never-used channel

A

B

C

D

50.7
43.8

37.2

35.1

61
.0

47
.5

40
.4

39
.0

42.5

Here is one serious problem with the naïve conservative algorithm. What happens if object C has a channel to A but rarely or never sends event messages along that channel?Then the input queue associated
with that channel at A is almost always, or always, empty! Hence, A is blocked most of the time, or even permanently, though it has plenty of events queued for execution. C may have progressed to a
time (42.5) well ahead of the time of the next event that A will execute, so it cannot possibly send an event that would cause A to receive a massage in the past. But A does not know this, and thus stays
blocked! That leads to A being at the very least badly delayed or even permanently blocked. And that condition spreads to other objects that A is supposed to send messages to, but can’t. It can also lead
to the blocking of processes that send to A (i.e. B and D) as A runs out of memory buffering their messages and then B and D block for flow-control. In effect, blocking propagates both forward and
backward along directed arcs outward from A. Hence, except in unusual cases (such as a graph with disconnected components) if a channel is never used, the situation devolves into global deadlock!!!
For this reason, one cannot get around the requirement of a static interaction graph just by deciding to choose as the complete graph connecting all objects to one another in both directions. Besides
requiring O(n**2) storage, that would leave most queues empty most of the time, and the system would thus be deadlocked.!!
Note a highly unusual peculiarity of the conservative, graph-oriented PDES algorithm: An object is slowed down or stopped when work is not sent regularly along one of the channels to it! An object
only progresses smoothly when events are regularly sent to it along every one of its input channels. If it does not get enough work to do from all of its suppliers, then it blocks!?! Usually failure to give a
server work from one of its clients just makes things go all the faster for the others. But not in this case.!!
This property is responsible for all of the difficulties with conservative algorithms. It is not shared by optimistic algorithms. I know of no other protocol in CS with this property -- it seems downright
perverse!

3 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

The problem of Deadlock around cycles

���4

Any cycle can be the site of a local deadlock which, left untended,
usually grows to become global.

The most worrisome hazard for a conservative PDES is that any directed cycle of queues in the graph can become a local deadlock if all become simultaneously empty. And the deadlock grows
inexorably as the queues to which the objects in the deadlock should be sending messages eventually become empty and thus block still more objects. Meanwhile long backups of messages may grow
in the nonempty queues, causing a flow control problems and further blocking. A local deadlock such as this, left untreated, will quickly grow to become global.!!
One might try to catch that deadlock while it is still local, and try to prevent or break it somehow. But the fact is that even detecting a “local” deadlock is way too costly. A deadlock involving only 2 or 3
objects out of a million is computationally way too expensive to monitor for, especially since they may reside in different places among the thousands of hardware nodes of the underlying cluster. (The
deadlock is “local” in the graph sense, but it is not necessarily “local” in the sense of all vertices being located on one physical node!). However, the cycle does not have to be small. A cycle of empty
queues involving very large numbers of objects can just as easily happen. !!
If the deadlock becomes global (which it will if the graph is connected), that condition is easily detected by periodically counting the number of objects that are not blocked, and when that total declines
to 0, a global deadlock is detected. A global deadlock is breakable. It is always the case that the object(s) with the lowest timestamped message globally can safely execute even if it has some empty input
queues. But it cannot do so until the deadlock becomes global and is detected! In the mean time, before the deadlock if fully global, more and more objects block, and the degree of parallelism declines
to zero. So performance sucks!!!
In fact, we should note that under the Naïve Conservative Algorithm, the any simulation with a cycle (which is practically all) actually starts in or near deadlock (!) with most queues empty. This is why
I call the Naïve Conservative Graph-oriented PDES algorithm “naïve”. A new idea has to be injected to make this work. That idea, of course is lookahead.

4 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

How to avoid deadlock

• If any channel is starved of messages (event messages
and null messages) then a deadlock will inevitably
spread from around the receiving LP on that channel.!
• Peculiar that the lack of traffic on a channel is what causes the problem!
• This is why we cannot simply adopt the complete graph of with arcs

between all nodes!

• A simulation is deadlock free ⇔ !
every channel transmits a never-ending sequence of messages (event
and null) messages with increasing time stamps!

• Most null message algorithms are variations on this
theme:!
• Whenever an LP simulation clock increases, send updated null messages

out all channels.!
• Send additional null messages when better lookahead information is

���5

5 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Deadlock-free Null Message Algorithm

���6

while (true) do {!
! simTime = ∞;"
" for (all input queues Q) {"
" " if (Q.empty()) {"
" " " wait for message to arrive in Q;"
" " }"
" " if (Q.head().timestamp < simTime) ("
" " " q = Q;"
" " " simTime = Q.head().timestamp();"
" " }"
" }"
!
" if (simTime > StopTime) break;"
!
" if (!q.head().nullMessage()) {" "
" " executeEvent(q.head());"
" }"
!
" for (all output channels C) {"
" " C.sendNullMessage(simTime + lookahead);"
" }"
!
 " q.removeHead();"
}

Find input queue q with lowest
timestamp event message or null
message across all input queues,
waiting for any empty queue to be
nonempty.

Termination test

Execute event messages, but not null
messages

Discard the message

Update simTime for null messages
just as for event messages

Send updated lookahead info out all
channels, in response to both event
messages and null messages. No
deadlock if eventually lookahead > 0

The red lines are those added to the “naïve” algorithm on a previous slide to make it deadlock free. !!
Note that the input queues now contain a mixture of null messages and real event messages, (sorted within each queue of course). And either kind of message can
be the one with the lowest time stamp and can cause the simulation clock to increase.!!
This algorithm is just a clean, compact model algorithm. Many variations are possible, especially regarding when null messages are sent and what the lookahead
values are.

6 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

20

22

1821 Deadlock

50
29

28

44 27 24

48
36

32

423735

Poor lookahead leads to bad performance

���7

Consider lookahead of 0.1
at each object!
!
Allow null messages to
prompt other null
messages.!
!
Send null message out all
channels output as often
as possible

7 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���8

20

22

1821

50
29

28

44 27 24

48
36

32

423735

Let’s assume we can break this deadlock initially by identifying one safe event (by some means) -- the event message that is circled in an input queue of the South
process.!!
From now on, real event messages will be blue, and null lookahead messages will be red.!!
Each following slide will represent all 4 processes either processing one event or updating its lookahead information by sending a null message out all of its output
channels.!!
(Note that sending null messages out all output channels, in response to an incoming null message, will cause an exponential blow-up. But even ignoring that (as
we are in this sequence) it still would not always work well.

8 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���9

20

24

1821

50
29

28

44 27

48
36

32

423735

24.1

9 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���10

20

24

24
.121

50
29

28

44 27

48
36

32

423735

24.
2

10 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���11

24.2

24

24
.121

50
29

28

44 27

48
36

32

423735

24.
3

11 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���12

24.2

24

24
.124.3

50
29

28

44 27

48
36

32

423735

24.4

12 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Poor and local lookahead leads to bad performance

���13

24.2

24.4

24
.124.3

50
29

28

44 27

48
36

32

423735

24.5

13 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Sources of lookahead information in a
model

• node service time!
• plane arrives at airport and cannot possible depart in < 0.8 hours!
• incoming packet has to be processed for a minimum of, say, 20 msec before a reply can

be sent!

• node refractory time!
• any two planes leaving the airport must be separated by, say, > 3 minutes!
• any two outgoing packets must be separated by at least, say, 10 μsec of overhead time !

• link travel time!
• plane departs from airport and cannot possibly arrive at destination in, say, < 3 hours!
• packet latency across the continent through Internet cannot be less than, say, 10 ms.!

• clock-based scheduling!
• no plane is not scheduled to depart from airport until, say, 13:05!
• no packet can depart on a shared TDMA link (statically time sliced) at least until the

sender’s next time slice, which is, say, 600 μsec in the future

���14

14 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

End Reprise

���15

15 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Dynamic object and channel creation

• Dynamic object creation !
• Easy when there are channels between

objects. (Not so easy otherwise, e.g.
Bounded Lag.)!

• Just instantiate with simTime in creator’s
future!

• Register its lookahead!

• Dynamic channel creation is
more complex !
• Must establish LookAhead value λ for

sender wrt receiver!
• If, at the time of creating the channel, !

Tsender + λ < Treceiver!
! then the receiver must be blocked until !

Tsender + λ >= Treceiver!
• Sender must not be able to send an

event message with a timestamp less
than Treceiver

���16

Receiver ahead of sender by more
than λ. Cannot send message (null or
real) with timestamp less than 115

100 95

100 105
λ = 10

100 115
λ = 10

Dynamic object creation is not trivial when there are not discrete event message channels involved, as there aren’t with the Bounded Lag protocol.!!
With Bounded Lag:!!
! 1) We must establish new object’s lookahead “distance” to and from all other objects, and broadcast it.!!
! Note that “to” and “from” may be different because D(p,q) != D(q,p)!!
! 2) We must be sure that the new object is not too far in the future of any other object in its !
! “w-neighborhood”. !!
! ! * It must block until it obeys the lookahead inequalities wrt all other senders in its w-neighborhood!!
! ! * All objects that act as receivers from the new object must block until new object advances to the !
! ! ! point where it obeys the lookahead inequality wrt to them!!
! Note that these two conditions are not the same because D(p,q) != D(q,p)!
! !
! 3) Notice that the first of these is a global operation that in principle involves every node,!
! and the second is a regional operation involving all objects in the w-neighborhood!!
With other protocols, different lookahead considerations arise, all boiling down to these two requirements: !
! !
! It must be impossible for any other object to send an event to the new object arriving in its past. !
! It must be impossible for the new object to send an event to any other object arriving in its past.!

16 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Criticisms of conservative paradigm

• Static model restrictions of some kind are generally required for
decent performance. Highly dynamic models, or those with port
lookahead, are basically excluded.!

• Additional synchronization logic required (lookahead) that is not
needed for sequential execution or optimistic parallel execution.!

• Lack of clean separation between the model and the simulator. !

• Conservative simulation performance is not robust in the face of
small changes to the model. !

• Conservative simulators do not generally achieve the maximum
concurrency possible even when the computation is balanced. !

• Somewhat surprisingly, graph-oriented conservative simulators
are not space optimal either — they may require much more
space than the sequential algorithm. !

• Development and long term maintenance of conservative
models, especially federated models, can thus be a pain.

���17

Static restrictions on models, while not fundamental, are usually imposed by the simulator.!
Except in special cases, conservative algorithms require additional logic (lookahead information and algorithms) not required for sequential execution, to avoid or break local deadlocks and to lubricate concurrency in
general. The “special cases” are mostly cycle-free feed-forward networks, or else time-stepped simulations cast as event driven simulations.!
The need for lookahead logic breaks the clean separation we like to have between the model and the simulator. !

A model designed for one conservative simulator (one with null messages, for example) has to be modified algorithmically to work with a different one (say, a Bounded Lag simulator). !
Two models designed for different conservative simulators cannot be easily coupled. !
Modelers have to know too much about the simulation algorithm!

Conservative simulations are not robust in the face of modest changes. A high performance simulation can be ruined by the introduction of an interaction that is in fact quite rare. !
Conservative simulators do not achieve the maximum concurrency possible. For models well suited to them they do OK, but in general they spend too much time waiting for possible interactions that in fact rarely or
never happen.!
Somewhat surprisingly, conservative simulators are not space optimal. In worst case they can require MUCH more space than the corresponding sequential execution, although usually not.!!!
Example of a slight alteration that ruins the performance of a conservative simulation:!!
! Suppose the airport example was extended with the possibility that while in !
! flight an aircraft might have to make an emergency landing at the nearest airport.!
! That is a rare event, but it has poor lookahead. It means that every airport !
! can now interact with all airports along its flight path, albeit very rarely, and !
! unpredictably (poor lookahead). The lookahead (warning interval in simTime) !
! is quite small compared to the delay between two successive emergency landings.

17 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical Path Theory

���18

18 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical Path Theory

How fast can a particular simulation run
on a particular machine?
!

How much parallelism is present in the
application?

���19

19 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Causality digraph and parallelism

• Every event (except initial) is
scheduled by some other event!

• Vertical arcs: successive state
changes in one object!

• Diagonal arcs: event messages!

• Paths represent causality
chains!

• Events connected by a path
must (appear to) be executed
sequentially !

• Events not connected by a
path can be executed in
parallel, even if out of time
order.

���20

si
m
Ti
m
e

objects

A PDES can be viewed as a digraph in simulation spacetime. In this diagram the horizontal axis is the space of objects, and the vertical axis is simulation time. The
nodes in the graph are events, and the arcs are causal connections representing information flows. The vertical arcs (without arrow heads) represent the flow of an
object’s state from one event to the next in that object. The slanted arc represent event messages sent by one event to be received during another.

20 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Add wall clock timings to spacetime
digraph

���21

si
m
T
im

e

objects

10

25

150 msg
latency

event
compute
time

event
overhead

The numbers here represent wall clock times on a particular (real or idealized) platform.!!
! The blue numbers on the events represent the wall clock time taken to execute an event. I have included !
! ! a range of event execution lengths in this diagram, anywhere from 45 to 200 units of time.!

! The red numbers on the arcs between events in the same LP represent event overhead, i.e. all of the !
! ! computation that is not direct execution of events. It includes synchronization, storage management, !
! ! etc. In this case I have made the arbitrary assumption that that is a constant 10 units of time everywhere.!

! The green numbers on the arcs that represent event messages indicate the message latencies, i.e. the wall !
! ! clock time required to transport a message from one process to another. In this case I have made the !
! ! arbitrary assumption that it takes 25 time units to send a message between two neighboring LPs, and !
! ! more time if the communicating LPs are more distant.!!
In each case these numbers should either be estimates of the minimum times each of these should take, or the average times. Use minimum times if you wish to get an actual lower bound
on runtime of the entire simulation. Use average times (considering message traffic effects and LP scheduling effects) if you want a somewhat more accurate estimate that is not strictly a
lower bound.!!
If the event overheads are negligible then you can set them to zero. If the message latency is negligible (e.g. in shared memory) then you can set them to zero. Etc.!

21 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Add wall clock timings to spacetime
digraph

���22

10
10

10

130

80

150

200

180

75

75

75

160

10

10

10
10

22 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical times for each event

���23

10
10

10

130

80

150

200

180

75

75

2500 2000

2400

75

280

10

10

23 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical times for each event

���24

10
10

10

130

80

150

200

180

75

75

2500 2000

2400

75

280

10

10

2705

Label both nodes and arcs of this graph with real-time timings according to some model of the performance of the underlying hardware that the simulation will run
on.!!
Graph nodes are labeled with the compute time required for the event it corresponds to.!!
Diagonal arcs are labeled with the message latency for that event message.!!
Vertical arcs are labeled with event overhead time.!

24 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical times for each event

���25

10
10

10

130

80

150

200

180

75

75

2500 2000

2400

75

280

10

10

2705

2795

Label both nodes and arcs of this graph with real-time timings according to some model of the performance of the underlying hardware that the simulation will run
on.!!
Graph nodes are labeled with the compute time required for the event it corresponds to.!!
Diagonal arcs are labeled with the message latency for that event message.!!
Vertical arcs are labeled with event overhead time.!

25 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical times for each event

���26

10
10

10

130

80

150

200

180

75

75

2500 2000

2400

75

280

10

10

2705

2795
3070

Label both nodes and arcs of this graph with real-time timings according to some model of the performance of the underlying hardware that the simulation will run
on.!!
Graph nodes are labeled with the compute time required for the event it corresponds to.!!
Diagonal arcs are labeled with the message latency for that event message.!!
Vertical arcs are labeled with event overhead time.!

26 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical path for the simulation

���27

200

10
10

10

130

80

150

180

75

75

2500 2000

2400

75

280

10

10

2705

2795
3070

Label both nodes and arcs of this graph with real-time timings according to some model of the performance of the underlying hardware that the simulation will run
on.!!
Graph nodes are labeled with the compute time required for the event it corresponds to.!!
Diagonal arcs are labeled with the message latency for that event message.!!
Vertical arcs are labeled with event overhead time.!

27 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Space-Time Diagram of PDES

���28

si
m
T
im

e

objects

This space-time graph depends only on the code and the input initialization of the simulation. The events executed, the simulation times at which they occur, and
the causal relations among them are all deterministic. So this graph is the same regardless of timing, synchronization, platform or runtime configuration.

28 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Space-time Digraph Labeled with Timings

���29

s
im

T
im

e

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

10

1010

10

10

10

10

10

10

10

10

10

10

25

40

25

25

25

25

25

25

15

15

25

40

25

25

15

25

25
40

25
5015

25

25

25

25

25

25

15

15

25

25

50

45

25

25

25

25

25

15

15

25

25

15

15

15

15

25

25

25

25

25

25

25

25

25

25

25

25

25

25

25

125

130

130

80

80

100

130

90

120

80

110

200

40

50

60

60

60

40

60

60

50

50

50

50

70

80

70

70

80

50

50

50

70

80

60

70

140

110

120

30

40

100

80

130

60

90

150

70

70

70

50

50

50

50

50

50

50

50

50

50

50

50

60

The numbers here represent wall clock times on a particular (real or idealized) platform.!!
! The blue numbers on the events represent the wall clock time taken to execute an event. I have included !
! ! a range of event execution lengths in this diagram, anywhere from 45 to 200 units of time.!
! The red numbers on the arcs between events in the same LP represent event overhead, i.e. all of the !
! ! computation that is not direct execution of events. It includes synchronization, storage management, !
! ! etc. In this case I have made the arbitrary assumption that that is a constant 10 units of time everywhere.!
! The green numbers on the arcs that represent event messages indicate the message latencies, i.e. the wall !
! ! clock time required to transport a message from one process to another. In this case I have made the !
! ! arbitrary assumption that it takes 25 time units to send a message between two neighboring LPs, and !
! ! more time if the communicating LPs are more distant.!!
In each case these numbers should either be estimates of the minimum times each of these should take, or the average times. Use minimum times if you wish to get an actual lower bound on runtime of the entire
simulation. Use average times (considering message traffic effects and LP scheduling effects) if you want a somewhat more accurate estimate that is not strictly a lower bound.!
! !
When you consider execution on a particular platform with a particular (static) assignment of objects to nodes, then the actual event timings, event overheads, and message latencies are introduced, based on the best case
performance on that platform and in that configuration.!!
Note that this applies to STATIC configurations. If there is dynamic load reconfiguration of any kind, then this diagram does not capture such effects.

29 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical Times

���30

s
im

T
im

e

0

215 225 250

240350425

410

345

420

515

650

515

590
685765

770

945

780 1020

1135

965

870

1050

1195
1320

1210

1295

1370

1525

1600

1320

1405

1470

1535

1475

1525
1540

1645

1730

1820

1730
1835

1960

2035

2090

2135

2280

2345

2410

2475

2540

1835

1920

2000

2095

2265
2080

238524002495

25352560

2685

These critical times are for the start of the events that they are attached to. Thus, if an event has critical time 650, than it cannot possibly start execution until wall
clock time 650. !!
We assume that when an event sends one or more messages, it does so at the end of its execution. Th!!
Note that in the diagram we have added a final fictitious termination event.!

30 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Critical Path(s)

���31

s
im

T
im

e

0

215 225 250

240350425

410

345

420

515

650

515

590
685765

770

945

780 1020

1135

965

870

1050

1195
1320

1210

1295

1370

1525

1600

1320

1405

1470

1535

1475

1525
1540

1645

1730

1820

1730
1835

1960

2035

2090

2135

2280

2345

2410

2475

2540

1835

1920

2000

2095

2265
2080

238524002495

25352560

2685

The critical path is not necessarily unique. There may be several, or many, paths that tie as the longest path. This diagram shows two paths of equal length. More
generally, there may be many paths of near-equal length, so that they are all co-critical.!!
The critical times and critical path can be calculated on the fly, during the simulation, in time linear in the length of the simulation, i.e. a constant overhead per
event. So it can and should be done routinely during PDES simulations.

31 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Co-critical Path(s)

• Many critical and near-critical paths
-- co-critical paths -- in a large
simulation. !

• Performance improvement requires
shortening all co-critical paths --
without lengthening others to
criticality.!

• Critical times and co-critical paths
can be computed during a run with
linear overhead!

• In improving performance, consider:!
• code shared among many co-critical

paths -- improve that shared code!
• objects shared among co-critical paths --

improve those objects!
• critical latencies between pairs of

objects -- shorten the distances between
those objects

���32

s
im

T
im

e

0

215 225 250

240350425

410

345

420

515

650

515

590
685765

770

945

780 1020

1135

965

870

1050

1195
1320

1210

1295

1370

1525

1600

1320

1405

1470

1535

1475

1525
1540

1645

1730

1820

1730
1835

1960

2035

2090

2135

2280

2345

2410

2475

2540

1835

1920

2000

2095

2265
2080

238524002495

25352560

2685

32 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Speed-up from parallelism

n	 	 	 number of objects (LPs) in the simulation 	
p	 	 	 number of processors used	
Tseq		 	 sequential execution time	
Tcrit		 	 critical path length	
Tp	 	 	 actual measured time on p nodes of cluster	
Sactual(p)		 actual measured speedup from parallelism using p nodes	
Spotential		 potential speedup from parallelism	
Sfraction(p)	 fraction of optimal speedup achieved	
Eprocs(p)	 	 processor efficiency; fraction of processor 	
	 	 	 	 time used for (committed) event execution	
!
n	 	 	 = 5	
p	 	 	 = 5	
Tseq		 	 = 4725	
Tcrit		 	 = 2685	
Tp	 	 	 = 3200 (suppose)	
Sactual(p)		 = Tseq / Tp	 	 	 	 = 4725/3200		 	 = 1.48	
Spotential		 = Tseq / Tcrit	 	 	 = 4725/2685		 	 = 1.76	
Sfraction(p)	 = Sactual(p) / Spotential		 = 1.48/1.76		 	 = 0.84	
Eprocs(p)	 	 = Tseq / (Tp * p)	 	 = 4725/(3200*5)		 = 0.295	

���33

33 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Optimistic
Parallel Discrete Event Simulation

Algorithms

���34

34 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Optimistic Paradigm

• No static restrictions!
• Any object can send an event message to any other!
• No graph structure or “channels” required, just a flat name space!
• Order preservation during message transport not required!
• Dynamic object creation and destruction permitted !
• No lookahead information required!

• Events are considered reversible -- they can be undone
(rolled back).!

• Rollback is the fundamental synchronization primitive, not
process blocking.!

• Optimistic PDES first introduced with the Time Warp
algorithm in 1984 (RAND Corp., JPL)!

• Many variants now, all descended from TW!

���35

35 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Fundamental idea

• Assume infinite storage (for now)!

• Save all event messages, both processed and unprocessed!

• Object simTime is index into message queue!

• Process all events in simTime order, blocking only when all
events in the queue have been processed

���36

PastFuture

100

160 137 115 100 92 58 31 12

36 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Fundamental idea

If an event message arrives in the “future”, just enqueue
it in sorted order and continue processing events

���37

100

160 137 115 100 92 58 31

140

12

37 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Fundamental idea

If an event message arrives in the “past”:!
1) Interrupt processing of the current event (if any)!
2) Enqueue event message in sorted order!
3) Roll back to “before” the events that should not have been done, !
 and continue from there

���38

100

160 137 115 100 92 58 31

46

12

38 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Synchronization
using

If an event message
arrives in the “past”,
roll back to “before”
the events that
should not have
been done, and
restart from there

���39

100

160 137 115 100 92 58 31

46

12

100

160 137 115 100 92 58 3146 12

46

160 137 115 100 92 58 3146 12

39 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Asynchronous, distributed rollback?
Are you serious???

• Must be able to restore any previous state (between events)!

• Must be able to cancel the effects of all “incorrect” event messages that should not
have been sent!
• even though they may be in flight!

• or may have been processed and caused other incorrect messages to be sent!

• to any depth!

• including cycles!!

• Must do it all asynchronously, with many interacting rollbacks in progress
concurrently!

• Must deal with the consequences of executing events starting in “incorrect” states!
• runtime errors!

• infinite loops!

• Must deal with truly irreversible operations!
• I/O, or freeing storage, or launching a missile!

• Must be able to operate in finite storage!

• Must guarantee global progress (if sequential model progresses)!

• Must achieve good parallelism, and scalability

���40

This shows the list of challenges we have to overcome for the Time Warp algorithm, or any optimistic PDES algorithm, to be practical. Most people with a
background in asynchronous distributed computation who have not seen optimistic PDES algorithms are inclined to believe that doing this is either literally
impossible, or at least hopelessly complex and slow.

40 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

The Time Warp Algorithm

���41

41 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Brief History of Time Warp

• Invented by myself and Henry Sowizral at the RAND
Corp. in 1983!

• Implemented and studied at JPL on Caltech Hypercubes
from 1985-1991!

• Many other contributors in the early years (Brian
Beckman, Peter Reiher, Anat Gafni, Orna Berry, Richard
Fujimoto, …)!

• First journal publication:!
Jefferson, David, “Virtual Time”, ACM Transactions on
Programming Languages and Systems (TOPLAS), Vol. 7, 3, pp.
404-425, July 1985

���42

42 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Time Warp Algorithm

• (sender,sendtime) are
spacetime coordinates
of sending event!

• (receiver, rcvtime) are
spacetime coordinates
of receiving event !

• sign is + or - (or 0)!

• messages identical,
but with opposite sign
are “antimessages”

���43

120

A

108

B

M(a,b)

+

rcv time

receiver

send time

sender

sign

event
content

An event message in the TW algorithms holds the spacetime coordinates of the sending event (B,108) and the spacetime coordinates of the receiving event (A,120).
It also has as sign, + or -, whose purpose will become apparent.!!
For reasons of symmetry, we consider saved states (forward reference) to also have a “send time” and a “receive time”. The “send time” is the time of the event that
produced the state, and the “receive time” is the time of the event that consumes the state, i.e. the time of the next event.

43 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Message and Antimessage

���44

120

A

108

B

M(a,b)

+

rcv time

receiver

send time

sender

sign

event
content

120

A

108

B

M(a,b)

-

Two event messages that are identical in all respects except for their signs are “antimessages” of one another. !!
As we will see, this terminology is apt because if antimessages come into “contact” with one another (by being enqueued in the same queue) they mutually
annihilate. More generally, as we will see later, messages are always created in antimessage pairs and destroyed in antimessage pairs. Hence, “charge” is conserved,
and the sum of all charge in the simulation is always zero.!!

44 PDES Course Slides Lecture 6.key - March 20, 2014

Parallel Discrete Event Simulation -- (c) David Jefferson, 2014

Message-AntiMessage Queueing Discipline

���45

144

A

92

B

+

120

A

119

C

-

115

A

108

D

+

100

A

95

B

+

98

A

94

G

+

64

A

52

C

+

35

A

16

D

+

20

A

18

B

+

Rcv

Send

64

A

52

C

-

120

A

119

C

+

144

A

92

B

+

115

A

108

D

+

100

A

95

B

+

98

A

94

G

+

35

A

16

D

+

20

A

18

B

+

Rcv

Send“Adding” antimessages to a
message queue can make it
shorter!

This is a “before” and “after” diagram. The message queue before (which happens to be an input queue since it is sorted by receive time) has 8 messages in it. (One of those messages is
negative--that can happen, although it is infrequent). !!
Two new messages arrive for enqueueing that happen to be antimessages to two other already in the queue. When they are “added” to the queue, the result is two annihilations and the
queue gets shorter.!!
As far as I know this is the only “collection” data type appearing in CS literature which admits of “negative” objects like this, so that “adding” to a collection results in the collection getting
smaller. It is not the same as just adding a delete(element) method to the data type, because such a method has no effect if the element is not present in the collection, whereas adding an
antielement does have an effect, which is manifest either immediately to annihilate with its counterpart, or later if and when its counterpart is enqueued!!
Note also, that it is not forbidden to have two or more identical copies of the same event message in a queue--that constitutes a tie and calls for invocation of a tie breaking rule, but is
otherwise OK. If, later and antimessage of one of them arrives, it annihilates with only one of the messages, leaving the others present. Message-antimessage annihilation “conserves
charge”.!!
The Time Warp algorithm with its message-antimessage terminology could, of course, be re-described without the colorful elementary particle analogy. However, I think it helps to reveal
the symmetries of the algorithm--there will be many more to come. So if you begin to think that the analogy is a little strained, please hold off until you see the way it develops later,
particularly when it comes to the flow control and storage management parts of the TW algorithm.

45 PDES Course Slides Lecture 6.key - March 20, 2014

